ReLU networks as surrogate models in mixed-integer linear programs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presolving Mixed-Integer Linear Programs

We survey the techniques used for presolving Mixed-integer linear programs (MILPs). Presolving is an important component of all modern MILP solvers. It is used for simplifying a given instance, for detecting any obvious problems or errors, and for identifying structures and characteristics that are useful for solving an instance.

متن کامل

Distributionally robust mixed integer linear programs: Persistency models with applications

In this paper, we review recent advances in the distributional analysis of mixed integer linear programs with random objective coefficients. Suppose that the probability distribution of the objective coefficients is incompletely specified and characterized through partial moment information. Conic programming methods have been recently used to find distributionally robust bounds for the expecte...

متن کامل

Inequalities for Mixed Integer Linear Programs

This tutorial presents a theory of valid inequalities for mixed integer linear sets. It introduces the necessary tools from polyhedral theory and gives a geometric understanding of several classical families of valid inequalities such as lift-and-project cuts, Gomory mixed integer cuts, mixed integer rounding cuts, split cuts and intersection cuts, and it reveals the relationships between these...

متن کامل

Valid inequalities for mixed integer linear programs

This tutorial presents a theory of valid inequalities for mixed integer linear sets. It introduces the necessary tools from polyhedral theory and gives a geometric understanding of several classical families of valid inequalities such as lift-and-project cuts, Gomory mixed integer cuts, mixed integer rounding cuts, split cuts and intersection cuts, and it reveals the relationships between these...

متن کامل

Duality for Mixed Integer Linear Programs

The theory of duality for linear programs is well-developed and has been successful in advancing both the theory and practice of linear programming. In principle, much of this broad framework can be extended to mixed integer linear programs, but this has proven difficult, in part because duality theory does not integrate well with current computational practice. This paper surveys what is known...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Chemical Engineering

سال: 2019

ISSN: 0098-1354

DOI: 10.1016/j.compchemeng.2019.106580